Emerging Liquid Crystal Technologies XV

Liang-Chy Chien
Dirk J. Broer
Igor Mušević
Editors

3–5 February 2020
San Francisco, California, United States

Sponsored and Published by SPIE
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510633698

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)- Fax +1 360 647 1445
SPIE.org
Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 0G, 0H, 0I, 0J, 0K, 0L, 0M, 0N, 0O, 0P, 0Q, 0R, 0S, 0T, 0U, 0V, 0W, 0X, 0Y, 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

SESSION 1 LIQUID CRYSTAL LENSES AND MICROLENS ARRAYS

11303 04 Modeling liquid crystal lenses (Invited Paper) [11303-3]

SESSION 2 PHASE AND SPATIAL LIGHT MODULATORS

11303 08 Finite element method for 3D optical modeling of liquid crystal on silicon spatial light modulator [11303-7]

11303 0B Controlling light with hyperbolic metamaterial director profiles [11303-10]

SESSION 3 POLYMER AND LIQUID CRYSTAL COMPOSITES

11303 0C Simple-structure thermoresponsive PNLCs for smart windows (Invited Paper) [11303-11]

SESSION 4 PHOTO-PATTERNING AND PHOTOALIGNMENT

11303 0F Shaping and positioning of topological defects in nematic liquid crystal cells equipped with patterned electrodes (Invited Paper) [11303-14]

11303 0I Novel photo-vertical alignment materials for low pre-tilt angle and low temperature cure process application [11303-17]

11303 0J Bistable liquid crystal phase grating device for smart window and window display applications (Invited Paper) [11303-18]

SESSION 5 LASERS, FILTERS, AND OTHER OPTICAL COMPONENTS

11303 0K Electric field tuning of ferroelectric liquid crystal microlaser (Invited Paper) [11303-19]

11303 0L Influence of liquid crystal molecular stacking structure on in-plane, out-of-plane retardation switching (Invited Paper) [11303-20]
SESSION 6 DIFFRACTIVE, LIGHT-FIELD, CHIRAL, AND HOLOGRAPHIC OPTICAL ELEMENTS

11303 0M Improved terahertz phase sensing by using liquid crystal phase shifter (Invited Paper) [11303-21]

11303 0N Advanced antenna design using radio frequency liquid crystals and LCD manufacturing (Invited Paper) [11303-22]

11303 0O Near zero laser speckle liquid crystal device (Invited Paper) [11303-23]

11303 0S Tunable liquid crystal beam steering device based on Pancharatnam phase [11303-27]

POSTER SESSION

11303 0V All-optical cryptography through metasurface based on phase changeable nanoantenna [11303-30]

11303 0W Mechano-thermo-chromic device with supersaturated salt hydrate crystal for next-generation smart window applications [11303-31]

11303 0X Fabrication of self-assembled nanoparticle cluster array using the surface affinity difference of isotropic droplets in nematic medium [11303-32]

11303 12 Enhanced flexoelectric anisotropy of nematic liquid crystal with hydrogen bonded dimer [11303-37]
The aim of the International Liquid Crystal Society is to unite scientists, engineers and students working in the broad field of liquid crystals. Event List. On this page we briefly summarize all upcoming events that we are aware of that may be of interest to liquid crystal researchers, around the world. Only title, date and location are provided, together with a link to the event homepage. You are encouraged to inform us about additional events that you believe should be included here. 2020. March. 24 - 27: 47th German Liquid Crystal Conference, Magdeburg, Germany. April. 6 - 8: the British Liquid Crystal Conference, Aberdeen, Scotland. July. 26 - 31: 28th International Liquid Crystal Conference - ILCC2020, Faculty of Sciences of the U PROCEEDINGS VOLUME 11303. Emerging Liquid Crystal Technologies XV. Editor(s): Liang-Chy Chien; Dirk J. Broer. For the purchase of this volume in printed format, please visit Proceedings.com. Liquid crystal based lenses with variable focal length are of broad interest due to their wide area of applications ranging from techniques to medicine. We present the modeling approaches and results for a couple of tunable liquid crystal based lenses, namely: curved electrode lens, lens with hole patterned electrode and high resistivity layer, lens based on modulated anchoring and contact lens. We also discuss the current challenges associated with the modeling of LC lenses and possible ways to overcome them. E. Lueder, Liquid Crystal Displays (John Wiley, Chichester, 2001)Google Scholar. 3. D.K. Yang, S.T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, Chichester, 2006)CrossRefGoogle Scholar. 4. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (John Wiley, Chichester, 1999)Google Scholar. 5. M. Schadt, W. Helfrich, Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl. Phys. Cheng KT. (2015) Liquid Crystal Display Present Status and Emerging Technology. In: Lee CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. 10941, Emerging Liquid Crystal Technologies XIV. KEYWORDS: Thin films, Refractive index, Femtosecond phenomena, Nanoparticles, X-rays, Light scattering, Magnetism, Picosecond phenomena, Liquids, Absorption. Read Abstract +. Magnetic fluids or ferrofluids (FF) are colloidal suspension of magnetic nanoparticles in a liquid carrier. When a material is illuminated with a high-intensity light, typically nanosecond, picosecond and femtosecond pulsed laser beam, its refractive index n2 and absorption coefficient β depend on the light intensity I. The Z-Scan (ZS) nonlinear optical and the Small-Angle X Use the Advanced Search Close. Emerging Liquid Crystal Technologies XV. View all articles. Journal Information.Â by SPIE-Intl Soc Optical Eng. in Emerging Liquid Crystal Technologies XV. Emerging Liquid Crystal Technologies XV, Volume 11303; doi:10.1117/12.2546233. Show/hide abstract. The publisher has not yet granted permission to display this abstract.