ENVIRONMENTAL NANOTECHNOLOGY
Applications and Impacts of Nanomaterials

Mark R. Wiesner • Jean-Yves Bottero
Contents

About the Contributors vii

Part I Nanotechnology as a Tool for Sustainability

Chapter 1. Nanotechnology and the Environment
Mark R. Wiesner and Jean-Yves Bottero 3

Nano-convergence and Environmental Engineering 4
Origin and Organization of this Book 6
References 13

Chapter 2. Nanotechnology and Our Energy Challenge
Wade Adams and Amy Myers Jaffe 15

Nanotechnology and Renewable Energy 19
Smalley Electricity Vision 22
Conclusion 24
References 25

Part II Principles and Methods

Chapter 3. Nanomaterials Fabrication
Jean-Pierre Jolivet and Andrew R. Barron 29

Specificity and Requirements in the Fabrication Methods of Nanoparticles 30
Oxides 31
Semiconductor Nanoparticles 58
(Quantum Dots and Quantum Rods)
Metallics, Bimetals, and Alloys 65
Carbon Based Nanomaterials 77
References 97

Chapter 4. Methods for Structural and Chemical Characterization
of Nanomaterials Jérôme Rose, Antoine Thill, and Jonathan Brant 105

Introduction 105
Principles of Light-Material Interactions 106
Atomic Force Microscopy and Scanning Tunnel Microscopy
Structural Characterization 107
Surface Physico-Chemical Properties
References

Chapter 5. Reactive Oxygen Species Generation on Nanoparticulate Material
 Michael Hoffmann, Ernest M. Hotze, and Mark R. Wiesner

 Background
 Nanoparticulate Semiconductor Particles and ROS Generation
 Metal Sulfide Surface Chemistry and Free Radical Generation
 Fullerene Photochemistry and ROS Generation Potential
 References

Chapter 6. Principles and Procedures to Assess Nanomaterial Toxicity
 Michael Kovochich, Tian Xia, Jimmy Xu, Joanne I. Yeh,
 and André E. Nel

 Introduction
 Paradigms for Assessing NM Toxicity
 Overall Considerations in the Assessment of NM Toxicity
 Use of Cellular Assays to Study Other Responses that Are Relevant
to NM Toxicity, Including Cellular Uptake and Subcellular Localization
 Nanosensors: Sensitive Probes for the Biodetection of ROS
 Nanoelectrodes
 Online Data Bank
 Abbreviations
 Acknowledgements
 References

Chapter 7. Nanoparticle Transport, Aggregation, and Deposition
 Jonathan Brant, Jérôme Labille, Jean-Yves Bottero,
 and Mark R. Wiesner

 Introduction
 Physico-chemical Interactions
 Aggregation
 Deposition
 Nanoparticle Behavior in Heterogeneous Systems
 Airborne Nanoparticles
 Summary
 References

Part III Environmental Applications of Nanomaterials

Chapter 8. Nanomaterials for Groundwater Remediation
 Gregory V. Lowry

 Introduction
 Reactivity, Fate, and Lifetime
 Delivery and Transport Issues
 Targeting
 Summary and Research Needs
 List of Acronyms and Symbols
 References
Chapter 9 Membrane Processes *Mark R. Wiesner, Andrew R. Barron, and Jérôme Rose*
Overview of Membrane Processes 337
Transport Principles for Membrane Processes 338
Membrane Fabrication Using Nanomaterials 341
Nanoparticle Membrane Reactors 356
Active Membrane Systems 366
References 367

Chapter 10 Nanomaterials as Adsorbants *Mélanie Auffan, Heather J. Shipley, SuJin Yean, Amy T. Kan, Mason Tomson, Jérôme Rose, and Jean-Yves Bottero*
Introduction 371
Adsorption at the Oxide Nanoparticles/Solution Interface 372
Nanomaterial-Based Adsorbents for Water and Wastewater Treatment 377
Concluding Remarks 388
Acknowledgements 389
References 389

Part IV Potential Impacts of Nanomaterials

Chapter 11. Toxicological Impacts of Nanomaterials *Nancy A. Monteiro-Riviere and Thierry Orsière*
Introduction 395
Fullerenes 396
Single-Walled Carbon Nanotubes (SWCNT) 401
Multi-Walled Carbon Nanotubes (MWCNT) 403
Complications in Screening Assays Using Carbon-Based Materials 405
Titanium Dioxides 406
Iron Oxides 412
Cerium Dioxides 420
Copper Nanoparticles 421
Gold Nanoparticles 422
Quantum Dots 424
Exposure and Risk Assessment 431
Environmental Impact 433
Conclusion 434
References 434

Chapter 12. Ecotoxicological Impacts of Nanomaterials *Delina Y. Lyon, Antoine Thill, Jérôme Rose, and Pedro J.J. Alvarez*
Introduction 445
Why Study the Effects of Nanomaterials on Microorganisms? 447
Methods to Assess Ecotoxicity 448
Bioavailability and Cellular Uptake of Nanoparticles 452
Nanomaterial Interaction with Microbial Cell Components 456
Antibacterial Activity of Nanomaterials 459
Biotransformation of Nanomaterials by Microbes 466
Acknowledgments

Portions of the work presented in this book were supported by grants from the US National Science Foundation, the US Environmental Protection Agency, and the ECCO-Dyn program of France’s CNRS-FNS. Support from the Office of Science and Technology of the French Consulate (Houston), and Rice’s Environmental and Energy Systems Institute in organizing the symposia that led to this effort are also gratefully acknowledged.
This review outlines the latest advances in nanomaterials, nanostructures, nanotechnologies and their environmental impact. Environmental restoration is based on the use of physic-chemical methods: adsorption, absorption, chemical reactions, photocatalysis, filtration and technologies that remove contaminants from soil, water and air. New technologies and nanomaterials are now being developed for environmental restoration. Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil, waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanotechnology Applications for Measurement in the Environment. Nanotechnology Applications for Sustainable Materials and Resources. This report on nanotechnology and the environment is one of a series of reports resulting from topical workshops convened during 2003 and 2004 by the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the National Science and Technology Council’s Committee on Technology through the National Nanotechnology Coordination Office (NNCO). The Environmental Nanotechnology section publishes high-quality research on the application of nanoscience and nanotechnology to reducing or preventing damage to the environment. It presents cutting-edge remediation technologies and advanced nanomaterials for sustainability, as well as the sustainable design, development and use of nanotechnologies and nanomaterials. Read More. Your research can change the world. How will nanotechnology affect our lives - this part will not look in terms of the technological impact such as faster and cheaper computers, but at the very important health and environmental effects that necessarily must be considered. When will it help cure cancer or and when might it cause it? Will the apparent ecological benefit of a nanoparticle that improves catalytic reactions be futile when we consider the ecological footprint of the nanoparticles’ life cycle? There are many open questions.