To My Family—Joan, Peter, and Stephanie
Contents

PREFACE

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>An Overview of Microelectronic Fabrication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A Historical Perspective</td>
</tr>
<tr>
<td>1.2</td>
<td>An Overview of Monolithic Fabrication</td>
</tr>
<tr>
<td>1.3</td>
<td>Metal-Oxide-Semiconductor (MOS) Processes</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Basic NMOS Process</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Basic Complementary MOS (CMOS) Process</td>
</tr>
<tr>
<td>1.4</td>
<td>Basic Bipolar Processing</td>
</tr>
<tr>
<td>1.5</td>
<td>Safety</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Lithography</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Photolithographic Process</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Wafers and Wafer Cleaning</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Barrier Layer Formation</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Photoresist Application</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Soft Baking / Prebaking</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Mask Alignment</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Photoresist Exposure and Development</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Hard Baking</td>
</tr>
<tr>
<td>2.2</td>
<td>Etching Techniques</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Wet Chemical Etching</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Dry Etching Plasma Systems</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Photoresist Removal</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Metrology and Critical Dimension Control</td>
</tr>
<tr>
<td>2.3</td>
<td>Photomask Fabrication</td>
</tr>
<tr>
<td>2.4</td>
<td>Exposure Systems</td>
</tr>
<tr>
<td>2.5</td>
<td>Exposure Sources</td>
</tr>
<tr>
<td>2.6</td>
<td>Optical and Electron Microscopy</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Optical Microscopy</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3 Thermal Oxidation of Silicon 43
3.1 The Oxidation Process 43
3.2 Modeling Oxidation 44
3.3 Factors Influencing Oxidation Rate 46
3.4 Dopant Redistribution During Oxidation 51
3.5 Masking Properties of Silicon Dioxide 51
3.6 Technology of Oxidation 52
3.7 Oxide Quality 53
3.8 Selective Oxidation and Shallow Trench Formation 55
 3.8.1 Trench Isolation 56
 3.8.2 Chemical Mechanical Polishing (CMP) 57
3.9 Oxide Thickness Characterization 61
3.10 Process Simulation 61
Summary 61
References 63
Problems 64

Chapter 4 Diffusion 67
4.1 The Diffusion Process 67
4.2 Mathematical Model for Diffusion 68
 4.2.1 Constant-Source Diffusion 69
 4.2.2 Limited-Source Diffusion 70
 4.2.3 Two-Step Diffusion 71
4.3 The Diffusion Coefficient 72
4.4 Successive Diffusions 74
4.5 Solid-Solubility Limits 74
4.6 Junction Formation and Characterization 76
 4.6.1 Vertical Diffusion and Junction Formation 76
 4.6.2 Lateral Diffusion 78
 4.6.3 Concentration-Dependent Diffusion 79
4.7 Sheet Resistance 81
 4.7.1 Sheet-Resistance Definition 82
 4.7.2 Irvin’s Curves 85
 4.7.3 The Four-Point Probe 88
 4.7.4 Van der Pauw’s Method 88
4.8 Generation-Depth and Impurity Profile Measurement 90
 4.8.1 Grove-and-Stain and Angle-Lap Methods 90
 4.8.2 Impurity-Profile Measurement 91
4.9 Diffusion Simulation 93
4.10 Diffusion Systems 95
 4.10.1 Boron Diffusion 97
 4.10.2 Phosphorus Diffusion 98
 4.10.3 Arsenic Diffusion 99
 4.10.4 Antimony Diffusion 100
Contents

<table>
<thead>
<tr>
<th>4.11 Gettering</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>101</td>
</tr>
<tr>
<td>References</td>
<td>102</td>
</tr>
<tr>
<td>Problems</td>
<td>103</td>
</tr>
</tbody>
</table>

Chapter 5 Ion Implantation 109

<table>
<thead>
<tr>
<th>5.1 Implantation Technology</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Mathematical Model for Ion Implantation</td>
<td>111</td>
</tr>
<tr>
<td>5.3 Selective Implantation</td>
<td>114</td>
</tr>
<tr>
<td>5.4 Junction Depth and Sheet Resistance</td>
<td>117</td>
</tr>
<tr>
<td>5.5 Channeling, Lattice Damage, and Annealing</td>
<td>118</td>
</tr>
<tr>
<td>5.5.1 Channeling</td>
<td>118</td>
</tr>
<tr>
<td>5.5.2 Lattice Damage and Annealing</td>
<td>120</td>
</tr>
<tr>
<td>5.5.3 Deviations from the Gaussian Theory</td>
<td>121</td>
</tr>
<tr>
<td>5.6 Shallow Implantations</td>
<td>121</td>
</tr>
<tr>
<td>5.6.1 Low-Energy Implantation</td>
<td>122</td>
</tr>
<tr>
<td>5.6.2 Rapid Thermal Annealing</td>
<td>123</td>
</tr>
<tr>
<td>5.6.3 Transient Enhanced Diffusion (TED)</td>
<td>123</td>
</tr>
<tr>
<td>Summary</td>
<td>124</td>
</tr>
<tr>
<td>References</td>
<td>125</td>
</tr>
<tr>
<td>Source Listing</td>
<td>126</td>
</tr>
<tr>
<td>Problems</td>
<td>126</td>
</tr>
</tbody>
</table>

Chapter 6 Film Deposition 129

<table>
<thead>
<tr>
<th>6.1 Evaporation</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1 Kinetic Gas Theory</td>
<td>130</td>
</tr>
<tr>
<td>6.1.2 Filament Evaporation</td>
<td>132</td>
</tr>
<tr>
<td>6.1.3 Electron-Beam Evaporation</td>
<td>132</td>
</tr>
<tr>
<td>6.1.4 Flash Evaporation</td>
<td>134</td>
</tr>
<tr>
<td>6.1.5 Shadowing and Step Coverage</td>
<td>134</td>
</tr>
<tr>
<td>6.2 Sputtering</td>
<td>135</td>
</tr>
<tr>
<td>6.3 Chemical Vapor Deposition</td>
<td>136</td>
</tr>
<tr>
<td>6.3.1 CVD Reactors</td>
<td>137</td>
</tr>
<tr>
<td>6.3.2 Polysilicon Deposition</td>
<td>138</td>
</tr>
<tr>
<td>6.3.3 Silicon Dioxide Deposition</td>
<td>139</td>
</tr>
<tr>
<td>6.3.4 Silicon Nitride Deposition</td>
<td>140</td>
</tr>
<tr>
<td>6.3.5 CVD Metal Deposition</td>
<td>141</td>
</tr>
<tr>
<td>6.4 Epitaxy</td>
<td>141</td>
</tr>
<tr>
<td>6.4.1 Vapor-Phase Epitaxy</td>
<td>142</td>
</tr>
<tr>
<td>6.4.2 Doping of Epitaxial Layers</td>
<td>145</td>
</tr>
<tr>
<td>6.4.3 Buried Layers</td>
<td>145</td>
</tr>
<tr>
<td>6.4.4 Liquid-Phase and Molecular-Beam Epitaxy</td>
<td>148</td>
</tr>
<tr>
<td>Summary</td>
<td>148</td>
</tr>
<tr>
<td>References</td>
<td>149</td>
</tr>
<tr>
<td>Further Reading</td>
<td>149</td>
</tr>
<tr>
<td>Problems</td>
<td>149</td>
</tr>
</tbody>
</table>
Chapter 7 Interconnections and Contacts 151

7.1 Interconnections in Integrated Circuits 151
7.2 Metal Interconnections and Contact Technology 153
 7.2.1 Ohmic Contact Formation 153
 7.2.2 Aluminum-Silicon Eutectic Behavior 154
 7.2.3 Aluminum Spiking and Junction Penetration 155
 7.2.4 Contact Resistance 156
 7.2.5 Electromigration 157
7.3 Diffused Interconnections 158
7.4 Polysilicon Interconnections and Buried Contacts 159
 7.4.1 Buried Contacts 160
 7.4.2 Butted Contacts 162
7.5 Silicides and Multilayer-Contact Technology 162
 7.5.1 Silicides, Polycides, and Salicides 162
 7.5.2 Barrier Metals and Multilayer Contacts 164
7.6 The Liftoff Process 164
7.7 Multilevel Metallization 166
 7.7.1 Basic Multilevel Metallization 166
 7.7.2 Planarized Metallization 167
 7.7.3 Low Dielectric Constant Interlevel Dielectrics 167
7.8 Copper Interconnects and Damascene Processes 168
 7.8.1 Electroplated Copper Interconnect 168
 7.8.2 Damascene Plating 168
 7.8.3 Dual Damascene structures 169
Summary 172
References 172
Further Reading 173
Problems 174

Chapter 8 Packaging and Yield 177

8.1 Testing 177
8.2 Wafer Thinning and Die Separation 178
8.3 Die Attachment 178
 8.3.1 Epoxy Die Attachment 179
 8.3.2 Eutectic Die Attachment 179
8.4 Wire Bonding 179
 8.4.1 Thermocompression Bonding 182
 8.4.2 Ultrasonic Bonding 183
 8.4.3 Thermosonic Bonding 184
8.5 Packages 184
 8.5.1 Circular TO-Style Packages 184
 8.5.2 Dual-in-Line Packages (DIPs) 184
8.5.3 Pin-Grid Arrays (PGAs) 185
8.5.4 Leadless Chip Carriers (LCCs) 186
8.5.5 Packages for Surface Mounting 186
8.6 Flip-Chip and Tape-Automated-Bonding Processes 187
 8.6.1 Flip-Chip Technology 188
 8.6.2 Ball Grid Array (BGA) 190
 8.6.3 The Tape-Automated-Bonding (TAB) Process 191
 8.6.4 Chip Scale Packages 193
8.7 Yield 194
 8.7.1 Uniform Defect Densities 194
 8.7.2 Nonuniform Defect Densities 195
Summary 198
References 198
Further Reading 199
Problems 199

Chapter 9 MOS Process Integration 201

9.1 Basic MOS Device Considerations 201
 9.1.1 Gate-Oxide Thickness 202
 9.1.2 Substrate Doping and Threshold Voltage 203
 9.1.3 Junction Breakdown 204
 9.1.4 Punch-through 204
 9.1.5 Junction Capacitance 205
 9.1.6 Threshold Adjustment 206
 9.1.7 Field-Region Considerations 208
 9.1.8 MOS Transistor Isolation 208
 9.1.9 Lightly Doped Drain structures 210
 9.1.10 MOS Transistor Scaling 210
9.2 MOS Transistor Layout and Design Rules 212
 9.2.1 Metal-Gate Transistor Layout 213
 9.2.2 Polysilicon-Gate Transistor Layout 217
 9.2.3 More-Aggressive Design Rules 218
 9.2.4 Channel Length and Width Biases 219
9.3 Complementary MOS (CMOS) Technology 221
 9.3.1 n-Well Process 221
 9.3.2 p-Well and Twin Well Processes 221
 9.3.3 Gate Doping 222
 9.3.4 CMOS Isolation 224
 9.3.5 CMOS Latchup 225
 9.3.6 Shallow Trench Isolation 225
9.4 Silicon on Insulator 226
 Summary 227
 References 228
 Problems 229
11.4 Surface Micromachining 279
 11.4.1 Cantilever Beams, Bridges and Sealed Cavities 279
 11.4.2 Movable In-Plane Structures 279
 11.4.3 Out-of-Plane Motion 282
 11.4.4 Release Problems 286
11.5 High-Aspect-Ratio Micromachining:
 The LIGA Molding Process 288
11.6 Silicon Wafer Bonding 289
 11.6.1 Adhesive Bonding 289
 11.6.2 Silicon Fusion Bonding 289
 11.6.3 Anodic Bonding 291
11.7 IC Process Compatibility 292
 11.7.1 Preprocessing 292
 11.7.2 Postprocessing 292
 11.7.3 Merged Processes 294
 Summary 295
 References 296
 Problems 298

ANSWERS TO SELECTED PROBLEMS 301

INDEX 303
Preface

The spectacular advances in the development and application of integrated circuit (IC) technology have led to the emergence of microelectronics process engineering as an independent discipline. Additionally, the pervasive use of integrated circuits requires a broad range of engineers in the electronics and allied industries to have a basic understanding of the behavior and limitations of ICs. One of the goals of this book is to address the educational needs of individuals with a wide range of backgrounds.

This text presents an introduction to the basic processes common to most IC technologies and provides a base for understanding more advanced processing and design courses. In order to contain the scope of the material, we deal only with material related to silicon processing and packaging. The details of many problems specifically related to VLSI/ULSI fabrication are left to texts on advanced processing, although problem areas are mentioned at various points in this text, and goals of the International Technology Roadmap for Semiconductors are discussed as appropriate.

Chapter 1 provides an overview of IC processes, and Chapters 2–6 then focus on the basic steps used in fabrication, including lithography, oxidation, diffusion, ion implantation and thin film deposition, and etching. Interconnection technology, packaging, and yield are covered in Chapters 7 and 8. It is important to understand interactions between process design, device design, and device layout. For this reason, Chapter 9 and 10 on MOS and bipolar process integration have been included. Chapter 11 provides a brief introduction to the exciting area of Microelectromechanical Systems (MEMS).

Major changes in the second edition of this text include new or expanded coverage of lithography and exposure systems, trench isolation, chemical mechanical polishing, shallow junctions, transient-enhanced diffusion, copper Damascene processes, and process simulation. The chapters on MOS and bipolar process integration have been substantially modified, and the chapter on MEMS is entirely new. The problem sets have been expanded, and additional information on measurement techniques has been included.

The text evolved from notes originally developed for a course introducing seniors and beginning graduate students to the fabrication of solid-state devices and integrated circuits. A basic knowledge of the material properties of silicon is needed, and we use Volume I of this Series as a companion text. An introductory knowledge of electronic components such as resistors, diodes, and MOS and bipolar transistors is also useful.

The material in the book is designed to be covered in one semester. In our case, the microelectronics fabrication course is accompanied by a corequisite laboratory. The students design a simple device or circuit based upon their individual capability, and the designs are combined on a multiproject polysilicon gate NMOS chip. Design, fabrication, and testing are completed within the semester. Students from a variety of disciplines, including electrical, mechanical, chemical, and materials engineering; computer science; and physics, are routinely enrolled in the fabrication classes.

Thanks also go to the many colleagues who have provided suggestions and encouragement for the new edition and especially to our laboratory manager Charles Ellis who has been instrumental in molding the laboratory sections of our course.

RICHARD C. JAEGER

Auburn, Alabama