Bibliography For William Gropp

[1] mat04:report
International workshop on advanced computational materials science:
Application to fusion and generation-IV fission reactors, 2004. Also
ORNL/TM-2004/132.

2007 International Conference on Parallel Processing (ICPP 2007),

21th International Parallel and Distributed Processing Symposium
(IPDPS 2007), Proceedings, 26-30 March 2007, Long Beach, California,

41st International Conference on Parallel Processing, ICPP 2012, Pitts-

[5] alm03:mpibgl
G. Almási, C. Archer, J. G. Castanos, M. Gupta, X. Martorell, J. E.
Moreira, W. D. Gropp, S. Rus, and B. Toonen. MPI on BlueGene/L: De-
signing an efficient general purpose messaging solution for a large cellular
system. In Jack Dongarra, Domenico Laforenza, and Salvatore Orlando,
editors, Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, number LNCS2840 in Lecture Notes in Computer Science,
Group Meeting, Venice, Italy.

George Almasi, Charles Archer, Jose G. Castanos, C. Chris Erway, Philip
Heidelberger, Xavier Martorell, Jose E. Moreira, Kurt Pinnow, Joe Ratter-
man, Nils Smeds, Burkhard Steinmacher-Burow, William Gropp, and
Brian Toonen. Implementing MPI on the BlueGene/L supercomputer.
In Proceedings of EuroPar2004, pages 833–845, 2004. Selected as distin-
quished paper.

[7] alma05:mpi-impl:bgl
George Almási, Charles Archer, Jose G. Castano, J. A. Gunnels,
C. Chris Erway, Philip Heidelberger, Xavier Martorell, Jose E. Moreira,
Kurt Pinnow, Joe Ratterman, Burkhard Steinmacher-Burow, William
Gropp, and Brian Toonen. Design and implementation of message-
passing services for the Blue Gene/L supercomputer. IBM Journal of

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] bagh10

[13] baik02:cluster-middleware
[14] bak03:cluster01

[15] conf/icpp/BalajiBPTG07

[16] conf/ipps/BalajiBBSTG07
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In *IPDPS* [3], pages 1–10.

[17] balaji-mpi-mill-11

[18] balaji-pmi-10

[19] 1612220

[20] DBLP:conf/pvm/BalajiBGGT08
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Toward efficient support for multithreaded MPI communication. In Lastovetsky et al. [362], pages 120–129.

[21] PavanBalaji02012010
[22] balaji-mpidata-10

[23] DBLP:conf/pvm/BalajiCGTL08

[24] DBLP:journals/ife/BalajiCTGL09

[25] Balay97

[26] petsc-user-ref

[27] petsc-cse15

[28] petsc-user-ref-3-0

[29] PETScUsers

[31] alice-siamoo-98-preprint

[32] bgms00:petsc-chapt

[33] bala03:sourcebook:pdesoft

[34] barrymangroppsaltz89

[35] bdec-report

[36] besa89

[37] Berryman:1990:KMP
[38] DBLP:conf/sc/BhateleJGK11

[39] conf/ipps/BhateleJGWGK11

[40] 8955452

[43] BIENZ2019166

[44] bla03:cray-eval

[45] bw-in-vetter13

Darius Buntinas, Guillaume Mercier, and William Gropp. Design and

[54] buntinas06:nemesis:shm

[55] bush00:petsc

[56] bus01:petsc-perf

[57] bgl00:mpd-short

[58] bgl00:mpi-mpd-tr

[59] bgl00:mpd

[60] bgl00:mpd-tr
Ralph Butler, William Gropp, and Ewing Lusk. Components and interfaces of a process management system for parallel programs. Technical
butlergropplusk93

byna08:_hidin_i_o_laten_with

byna08:_paral_i_o_prefet_using

byna03:mpi-impl

byna06:mpi:datatypes

XCCai_WDGropp_DEKeyes_MDTidriri_1994a

craigroppkeyes91
[68] caigropp97

[69] caigroppkeyestidriri94

[70] Cai:1992:CSD

[71] Cai:1992:CRE

[74] CalhounOlsonSnirGropp:2015:FR_AMG

[75] conf/hpdc/CalhounSOG17
Jon Calhoun, Marc Snir, Luke N. Olson, and William D. Gropp. Towards a more complete understanding of SDC propagation. In H. Howie Huang,
[76] FranckCappello11012009

[77] cappello14-resilience

[79] carns2012case

[80] 10.1109/SC.Companion.2012.19

[81] chan08-bg-fft

[82] chan02:scalable-log

[91] ching-io-02

[92] ching-io-03

[93] ching04:paralle-io

[94] DBLP:journals/ijhpcn/ChingCLRG04

[95] pvmmpi99-totalview

[96] pvmmpi99-totalview-tr

[98] journals/pc/DangSG17
[99] dgw02:wan-ftp

[100] dg02:wan-ftp

[101] CPE:CPE3758

[102] contextid-12

[104] Dongarra01022011

[105] *crpchandbook*

[106] *dozsa-threads-10*

[107] *gropp93*

[109] 10.1145/3330345.3330358

[111] *evans03:network*
[12] **EVA03.soft**

[13] **falz05:mpi-impl**

[14] **falz07:mpi-debug**

[15] **6702642**

[16] **nes06**

[17] **forsman95**

[18] **forsman95rpt**

[19] **ppsc95*225**
Kimmo Forsman, William Gropp, Lauri Kettunen, and David Levine.

[120] mpi-1-standard

[121] mpi-nexus-pc

[122] ppsc91*307

[123] FGS

[124] of03:sourcebook:pgmmodels

[125] icpp90-3*35

[126] alice-infrastructure

[127] frei99:num-soft
Lori A. Freitag, William Gropp, Paul D. Hovland, Lois C. McInnes, and

[128] **gahvari10**

[129] **conf/ics/GahvariBSYJG11**

[130] **DBLP:conf/icpp/GahvariGJSY12**

[131] **conf/ipps/GahvariGJSY13**

[132] **Gahvari15-AMG-Dragonfly**

[133] **ppsc93*160**

[134] **galbreath:applio**

[142] greenberggropp90

[143] gropp86a

[144] gropp88c

[145] gropp88a

[146] gropp:1995:MGX

Gropp:1995:IMM

Gropp:1995:MMI

Gropp:1997:HPM

Gropp:1997:SMC

Gropp:1996:HPI

GroppMore97

Gropp:1994:SEP

6636318
[158] **GROPP84A**

[159] **GROPP84**

[160] **GROPP85**

[162] **gkks99:perf-bounds**

[163] **gkks:cfd-hiperf-tr**

[164] **gkks:cfd-perf**

[165] **gkks:cfd-scal-perf00**

[166] **gkks:cfd-hiperf-art**

[175] WDGropp_DEKeyes_JSMounts_1994a

[176] WDGropp_DEKeyes_MDTidriri_1995a

[178] gropp-odonnell84

[179] WDGropp_BFSmith_1994a

[180] Gropp87b

[181] gro90:par-comp

[182] gropp91:visual-artifacts
[183] GroppWilli1993a

[184] gropp93:parallel

[185] groppscs93

[186] GroppWilli1995b

[187] gropp-siamoo-98

[188] gropp00:petsc-lessons

[189] DBLP:conf/cluster/Gropp01

[190] DBLP:conf/pvm/Gropp01

[191] gropp01:mpi-misc
William Gropp. Learning from the success of MPI. Technical Report

[192] gropp02:mpi-generic

[193] DBLP:conf/pvm/Gropp02

[194] groo3:sourcebook:poisson

[195] gro03:mpitrends

[196] groo3:sourcebook:

[197] gro03:beowulf:use

[198] qcdoc03:trends

[199] groop4:par-soft
[200] gro04:mpi-pgming

[201] grop05:progmodels

[202] Grop07GridSummary

[203] 1612212

[205] mpi-success-12

[206] xpacc-cse15

[207] fpmi
[208] Grop07Grid

[209] UsingAdvancedMPI

[210] conf/pvm/GroppHTT11

[212] gkmt-nks00

[213] gkmt-nks-98-preprint

[214] gkmt-nks-98

[215] gropp06:_paral_tools_envir
William Gropp and Andrew Lumsdaine. Parallel tools and environments:

[216] GroppWilli92a

[217] pvmmpi99-mpptest-tr

[218] gro03:beowulf:mpi2

[219] gro03:beowulf:mpi1

[220] gropp04:mpi-fault

[222] gropp-lusk-skjellum:using-mpi2nd

[223] UsingMPI3rd

[224] beowulflinux2nd

[26] gropp-lusk-thakur:usingmpi2

[27] DBLP:conf/pvm/GroppL02

[28] DBLP:conf/pvm/GroppL03

[29] sc13-specialissue

[31] gro04:pario

[32] gro04:par-io;tr
William Gropp, Robert Ross, and Neill Miller. Providing efficient I/O

[233] gro88:par-cfd

[234] WilliamGropp11012009

[235] gro05:mpi-rma-impl

[236] pmodels-mpi:15

[237] GRopp2019-EuroMPI17

[238] GRopp2020101203

[240] gropp-thesis

[241] gropp83
William D. Gropp. Local uniform mesh refinement for elliptic partial

[242] groppLUMR87

[245] gropp-nla87

[246] groppadapt88

[247] gropp-dyngrid89

[248] gropp91

[250] bfort-manual

[251] doctext-manual

[252] tohtml-manual

[253] groppdebug97

[254] gropp-mppm97

[255] gropppetsc97

[256] groppmaui97

[257] gro:mpi-datatypes:pvmmip00

[258] gro00:mpi-impl
[259] gro01:mpi-lessons

[260] gro02:mpi-impl:generic

[261] gro04:par-issues

[262] DBLP:conf/pvm/Gropp04

[263] gro04-bk:par-issues

[264] DBLP:conf/pvm/Gropp08
William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [362], pages 6–7.

[265] 1608633

[266] conf/ics/Gropp11

[269] GROPP201998

[270] groppfoulser89

[272] ghs-pm-siamcse11

[274] groppkaper94
groppkaper96

gropp00performance

gkks00:fun3d

gropp06:radtransport

groppkeyes89

groppkeyes90

Gropp:1988:CPI

Gropp:1989:DDP

ppsc89*295
William D. Gropp and David E. Keyes. Parallel domain decomposition with local mesh refinement. In Danny C. Sorensen, Jack Dongarra, Paul

[284] *groppkeyes90b*

[285] *groppkeyes91a*

[286] *groppkeyes91*

[287] *groppkeyes-asymp92*

[288] *groppkeyes92*

[289] *groppkeyesmcinnestidriri97*

[290] DBLP:conf/pvm/GroppKRTT08

[291] *gropp06:ppsurvey*

[292] *groppplusk94*

[293] mpich-install

[294] mpich-user

[295] gropplusk_pvmmpi97

[296] groppluskpvmmpi97

[297] pvmmpi99-mpptest

[298] gro02:mpi-pvm

[299] gro04:mpi

[300] groppluskpieper94
[301] GroppLusk95

[302] GroppMcInnesSmith95

[303] GroppWilli95a

[304] groppmore97rpt

[305] groppschultz89

[306] groppschultz90

[307] SLES-manual

[308] KSP-manual

[309] Chameleon-manual

[310] groppsmith95

[313] groppsmith90

[314] grop06:mpi:threads

[315] DBLP:conf/pvm/GroppT07

[316] guo2013applications

[317] GuoGropp10
[318] Guo01022014

[319] Guo14072015

[320] gropp-bedstrom83

[321] herbin87

[322] mpi-mpi-hybrid-programming

[323] mpi-sharedmem-12

[324] journals/topic/HoeflerDTBBGU15

[326] hoefler-model-10

[327] natureMMA19

[328] eliu-bigdata-20

[329] 8778229

[330] IBEID202063

[331] DBLP:conf/sc/2014pmbs

[339] ksfglb00:mpi-collective

[340] kar02:mpi-impl

[341] kdSFGLB00:mpi-ngi

[342] kaushik08-tensor

[343] kend06:pde

[344] kettunenforsman93

[345] kettunen94
L. Kettunen, K. Forsman, D. Levine, and W. Gropp. Integral equations

[346] kettunenforsmanlevinegropp94

[347] KEYESS85

[348] DEKeyes_WDGropp_1989a

[349] DEKeyes_WDGropp_1991a

[350] DEKeyes_WDGropp_AEcder_1989a

[351] scalesv1-03

[352] scalesv2-04

[353] nsf–soft10
Keyes:1987:CDD

Keyes:1989:DDL

keyesgropp90

Keyes:1990:DDT

keyesgropp92

Keyes01022013

KeyesMcInnesWoodwardEtAl12
David E. Keyes, Lois Curfman McInnes, Carol Woodward, William D. Gropp, Eric Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo,

[362] DBLP:conf/pvm/2008

[363] DBLP:conf/pvm/LathamGRT07

[364] LevGroForKet99:petsc-coral

[365] li03:pnetcdf

[366] liu03:mpich2-infiniband

47
[367] liu03:mpich2-infiniband-ipdps

[368] lusk03:beowulf:pgmming

[369] conf/hpdc/LuuWGRCHPBY15

[370] mellor2010teaching

[371] mpi-2-standard

[372] ppsc89*386

[373] NAP21886

[374] NAP25199
NAP18972

Dagstuhl:2007

ong-lusk-gropp:SUT

ong-lusk-gropp:SUT-tr

conf/pvm/PenaCDBTG13

DBLP:conf/pvm/PervezGKPTG07

gopal10
Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Formal methods applied to high-performance computing software design: a case study of MPI one-

[383] pervez06:formal:mpi

[384] conf/pvm/PrabhuG15

[386] 10.1007/978-3-030-17872-7_4

[387] conf/ipps/RandlesKHGK13

[388] conf/pvm/RashtiGBAG11

[389] ros03:mpidatatype

[390] ross04:mpi-impl:tr

[391] 1612222

[392] ross:mpi-io:atomic

[393] rfgkst00:mpichg-qos-sc

[394] rfgkst00:mpichg-qos

[395] sack-exascale-10

[398] 1577927

[399] jms04:grid

[400] GPW05-Report

[401] DBLP:conf/pvm/SharmaVGKTG08

[402] shen:accel

[403] 5725240

[404] SkjellumAn1994a

Rajeev Thakur and William Gropp. Improving the performance of collective operations in MPICH. In Jack Dongarra, Domenico Laforenza, and

[415] thakur03:mpi-coil

[416] thak03:sourcebook:mpiio

[417] conf/aPcsac/ThakurG07

[418] DBLP:conf/pvm/ThakurG07
Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI_THREAD_MULTIPLE. In Cappello et al. [78], pages 46–55. Outstanding paper (1 of 4).

[419] thakur09:MPIthreads

[420] ThakurGroLus96

[421] thakur:abstract-tr
[422] **thakur:evaluation**

[423] **thakur:evaluation-tr**

[424] **ROMIOUsers**

[425] **thakurgroplusk-datasieving98**

[426] **thakur-gropp-lusk-mpiio**

[427] **thakurfrontiers99**

[428] **thak99b**

[429] **tgl02:mpiio**

55

[438] thakurluskgropp-datatype98

[439] thakurluskgropp98

[440] thak04:mpi-impl:coll

[441] thak05:mpi-impl:coll

[442] 8661203

[443] 1679706

[444] toas01:bnr-design

[445] DBLP:conf/pvm/TraffGT07
traff2010

DBLP:conf/pvm/TraffRSBTG08

JesperLarssonTraff02012010

DBLP:conf/pvm/VakkalankaDGKTG08
Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verification methods for MPI programs. In Lastovetsky et al. [362], pages 248–256.

vin01:mpi-impl

deflatedgmress13

wagg01:linux-petsc

SC00-CD-ROM*50

[455] 1598125

[456] zaki-lusk-gropp-swider99

[457] zaki-lusk-gropp-swider99-techrpt

[458] 6808175

[459] conf/ccgrid/ZhaoBG15

[460] conf/ispdc/ZhaoBG16

[461] 6844416
[462] zhao13-am-mpi

[463] adaptive-rma-12

[464] 1612262

[465] zima:hppl04

William Gropp. The Message Passing Interface (MPI) was developed over eighteen years ago and continues to be the preferred programming model for scientific computing. Contributing to that success was a combination of forward-looking features, precise definition, and judgment based on the experience of developers, vendors and users.

The Communications Web site, http://cacm.acm.org, features more than a dozen bloggers in the BLOG@CACM community. In each issue of Communications, we'll publish selected posts or excerpts. twitter Follow us on Twitter at http://twitter.com/blogCACM