OpenCL in Action: How to Accelerate Graphics and Computations

Matthew Scarpino
Manning Publications, 2011

BibTeX

Summary: OpenCL in Action is a thorough, hands-on presentation of OpenCL, with an eye toward showing developers how to build high-performance applications of their own. It begins by presenting the core concepts behind OpenCL, including vector computing, parallel programming, and multi-threaded operations, and then guides you step-by-step from simple data structures to complex functions. About the technology: Whatever system you have, it probably has more raw processing power than you’re using. OpenCL is a high-performance programming language that maximizes computational power by executing on CPUs, graphics processors, and other number-crunching devices. It’s perfect for speed-sensitive tasks like vector computing, matrix operations, and graphics acceleration. About this book: OpenCL in Action blends the theory of parallel computing with the practical reality of building high-performance applications using OpenCL. It first guides you through the fundamental data structures in an intuitive manner. Then, it explains techniques for high-speed sorting, image processing, matrix operations, and fast Fourier transform. The book concludes with a deep look at the all-important subject of graphics acceleration. Numerous challenging examples give you different ways to experiment with working code. A background in C or C++ is helpful, but no prior exposure to OpenCL is needed. What’s inside: Learn OpenCL step by step; Tons of annotated code; Tested algorithms for maximum performance.

Tags: Book, Computer science, OpenCL, Programming techniques, Tutorial

December 26, 2011 by hgpu

Rating: 2.5/5. From 1 vote.
Most viewed papers (last 30 days)

- Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields using GPUs and Multi-GPUs systems
- Designing a Modern Skeleton Programming Framework for Parallel and Heterogeneous Systems
- OpenCL Performance on the Intel Heterogeneous Architecture Research Platform
- Transparent Compiler and Runtime Specializations for Accelerating Managed Languages on FPGAs
- Performance Assessment of OpenMP Compilers Targeting NVIDIA V100 GPUs
- Mixed-Precision Embedding Using a Cache
- AMGCL - A C++ library for efficient solution of large sparse linear systems
- FlowPM: Distributed TensorFlow Implementation of the FastPM Cosmological N-body Solver
- Memory Optimization for Deep Networks
- Cross-platform programming model for many-core lattice Boltzmann simulations