A detailed analysis of film cooling physics: Part IV—compound-angle injection with shaped holes

The flow physics of film cooling with compound-angle shaped holes is documented for realistic gas turbine parameters. For the first time in the open literature, the combined effects of compound-angle injection and hole shaping are isolated and the dominant mechanisms are examined. Results provide valuable insight into the flowfield of this class of film-cooling jets. Computational and experimental results are presented for a row of holes injected at 35 deg on a flat plate with three distinct geometric configurations: (1) streamwise injected cylindrical holes (reference case); (2) 15 deg forward-diffused holes injected at a 60 deg compound angle; and (3) 12 deg laterally diffused holes injected a 45 deg compound angle. Detailed field and surface data, including adiabatic effectiveness (η) and heat transfer coefficient (h), of the two compound-angle shaped holes are provided and compared to: (i) the references streamwise cylindrical case; (ii) results from Part II detailing the compound-angle flowfield for cylindrical holes; (iii) results of Part III detailing the streamwise injected shaped-hole flowfield; and (iv) experimental data. The 60 deg compound-angle forward-diffused holes provided excellent lateral coolant distribution, but suffered from crossflow ingestion at the film-hole exit plane. The 45 deg compound-angle lateral-diffused hole and had much steeper lateral effectiveness variations. A previously documented and validated computational methodology was utilized. Computations were performed using a multiblock, unstructured-adaptive grid, fully implicit pressure-correction Navier–Stokes code with multigrid and underrelaxation type convergence accelerators. All simulations had fixed length-to-diameter ratio of 4.0, pitch-to-diameter ratio of 3.0, nominal density ratio of 1.55 and film-hole Reynolds number of 17,350, which allowed isolation of the combined effects of compound-angle injection and hole shaping for nominal blowing ratios of 1.25 and 1.88. The results demonstrate the ability of the prescribed computational methodology to predict accurately the complex flowfield associated with compound-angle shaped-hole film-cooling jets. [S0889-504X(00)01501-4]

Copyright © 2000 by ASME

You do not currently have access to this content.

View full article

Sign In

Sign In or Register for Account

Purchase this Content

$25.00

Purchase

Learn about subscription and purchase options

View Metrics

Get Email Alerts

Get Email Alerts

Article Activity Alert
Accepted Manuscript Alert
New Issue Alert

Cited By

Cited By

Web Of Science (64)
Google Scholar
CrossRef

Latest
Parametric Investigation of Flow Conditions in Intersecting Circular Passages

GT2007

Related Chapters

Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)

Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition

Extended Surfaces
Thermal Management of Microelectronic Equipment

Issues
Accepted Manuscripts
All Years
Purchase
Twitter
About the Journal
Editorial Board
Information for Authors
Call for Papers
Rights and Permission

Online ISSN 1528-8900 Print ISSN 0889-504X

Journals
About ASME Journals
Information for Authors
Submit a Paper
Call for Papers
Title History

Conference Proceedings
About ASME Conference
Publications and Proceedings
Conference Proceedings
Author Guidelines