Course and Instructor Information
Professor: Rachel Margolis, Ph.D.
Office: Social Science Center 5326
Email: rachel.margolis@uwo.ca
Office Hours: Tuesday 10:30am-noon
3 seminar hours, 0.5 course

Course Description
In this course we will cover the most common statistical techniques in the practice of sociology – linear regression, logistic regression, survival analysis (event history analysis), and fixed effects models. We will discuss the uses of these techniques and the assumptions that we make when using them. We will also spend time discussing how to interpret results and how to choose the best method for the research question. We will cover issues that we need to pay attention to, such as nonlinearity, outliers, multicollinearity, and interaction terms. We will also discuss basics of panel data analysis. Throughout the course, we will discuss how to develop an answerable research question, how to choose the best modeling strategy for that question, and how to interpret the results of quantitative analysis in light of relevant hypotheses.

We will have an applied portion of the class held in the computer lab (SSC 1000). We will conduct data analysis using STATA, a statistical analysis software package. In the lab, we will talk through basic issues that come up such as dealing with missing data; saving data, code, and output; and making tables.

The last portion of the course will focus on writing about multivariate analysis. Once you’ve done some analysis, it’s important to be able to communicate clearly what you did, why, and what you found. You must come into the course with a project in mind, for which you use one of the methods that we learn about in class. The project will be the majority of a paper including the research questions, contributions, data, methods, results and discussion sections. In workshop format, students will present their projects to the class.

Learning Outcomes
1. Understand the assumptions made when using linear regression, logistic regression and survival analysis.
2. Interpretation of key results from multivariate models.
3. Conduct analysis with these methods using Stata.
4. Critically evaluate published research utilizing common multivariate methods in sociology.
5. Communicate about the results of multivariate analysis in presentation form and in writing.
Prerequisites

Students should have taken an introductory statistics course at the graduate level that covers descriptive statistics, probability, bivariate regression, ANOVA, and linear regression. There will be a diagnostic test in week 1. Students who do not have the requisite knowledge will be referred to an introductory course before they can take this course.

We will be using Stata, a data analysis software, in class. Students should have been exposed to this in introductory statistics (Soc 9001A). Those with little computer literacy are strongly advised to make use of the opportunities provided by the Social Science Computing Lab with non-credit courses and/or consulting desk services.

We will be doing data analysis in the SSC computer lab in room 1000. Students should have a computer account with the SSNDS network and should make sure their login works prior to the first computer lab session. In order to have access to STATA in the computer lab, students must:

1) Have active Western accounts
2) Have subscribed to “Western Identity Manager” and synchronized their passwords through the “Profile” tab.
3) If students are having problems with any of the above, then they can either call the SSNDS main office at 519-661-2152 or call the ITS Help Desk at 519-661-3800.

Requirements and Evaluation

Grading will be based on a midterm test, quiz, and a data analysis project.

Midterm Test (35%), February 11, 2015

Quiz (10%), March 11, 2015

Data Analysis Project

- Research Questions and Data Sections (10%), Due Feb 25, 2015
- Presentation (20%), in class March 25, April 1, and April 8, 2015
- Final Version Due April 13, 2015 at 10am (25%)

The Data Analysis Project (More instructions at end of course outline)

The data analysis project is designed to help students develop a research question, conduct data analysis, make tables, and write and present the method and results. Throughout the semester, you will gain skills that you will then use in your research project. The project can be on any topic, but it must use one of the methods that we are covering in the course.

There are 3 graded components to the project:

1) **Research Questions and Data:** (1-2 pages) Students will submit their research question and data section for the paper on February 25th in class. Include here a section on the data that you will use to answer the research questions. Explain why the data are well suited to the research question at hand.

2) **In-class presentation:** During the last few weeks of the term, students will present their projects to the class. The in-class presentations will take place on March 25, April 1, and April 8. Students should prepare a 10-13 minute presentation on their research project.

3) **Research papers are due April 13th 10am.** Students will turn in the following sections of a research paper: Research Questions, Contributions, Data, Methods, Results, Tables, and References. Directions for formatting can be found at the end of the course outline.
Overview of Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Notes Whether We Have a Lab Session 1:30-2:30pm*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 7</td>
<td>Introduction, Short Review, Diagnostic Test, Working with Data</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 14</td>
<td>Linear Regression Review</td>
<td>Lab Session 1</td>
</tr>
<tr>
<td>3</td>
<td>Jan 21</td>
<td>Linear regression- making a model, interactions</td>
<td>Lab Session 2</td>
</tr>
<tr>
<td>4</td>
<td>Jan 28</td>
<td>Regression Diagnostics/Logit models Week 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Feb 4</td>
<td>Logit models II</td>
<td>Lab Session 3</td>
</tr>
<tr>
<td>6</td>
<td>Feb 11</td>
<td>Midterm Test (In Class)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Feb 18</td>
<td>Reading Week / No class</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Feb 25</td>
<td>Survival Analysis I</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>March 4</td>
<td>Survival Analysis II</td>
<td>Lab Session 4</td>
</tr>
<tr>
<td>10</td>
<td>March 11</td>
<td>Quiz, Panel Data</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>March 18</td>
<td>Panel Data and Fixed Effects Models</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>March 25</td>
<td>Workshop Student Projects</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>April 1</td>
<td>Workshop Student Projects</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>April 8</td>
<td>Workshop Student Projects</td>
<td></td>
</tr>
</tbody>
</table>

April 13, 2015 Research papers are due at 10am.

* Note: If there is no lab session, then class will be held in SSC 5220 from 1:30 – 4:30.
Required Text
There are no required texts for this course. Recommended texts are below. Other readings will be provided on the owl/sakai course website.

Recommended Texts (These texts will be on course reserve at Weldon Library)
This book is a friendly book which clearly describes the purposes of linear regression, the assumptions made, and how multiple regression differs from other statistical techniques.

This book is a very good resource for writing about the results of linear and logistic regression, and survival analysis. Also consult this book when making tables.

This text is an applied text on linear regression which focuses on guiding students through using data, running, and interpreting regressions. It includes examples for commands using STATA and SAS.

This is a helpful text for those who are using survival analysis for a project. Not necessary to purchase for the course.

For more information on specific methods, consult alternative texts. Below are a few recommended texts.

Readings
Methods readings almost all come from the 5 recommended texts which can be bought at the bookstore or borrowed from Weldon course reserve. All example readings and a few methods readings are journal articles and will be available on the course website or through the library website.

Week 1: Introduction
Methods reading: Review Gordon textbook Chapters 1-4 for a refresher on linear regression.
Methods reading: Start reading Allison’s primer “Multiple Regression”

Week 2: Linear Regression
Methods reading: Miller Chapters 5 and 6
Methods reading: Gordon textbook Chapters 5-6

Week 3: Linear Regression and Interaction Terms
Methods reading: Gordon textbook Chapters 7 and 8
Methods reading: Miller Chapter 9

Week 4: Regression Diagnostics, Logit Models I
Methods reading: Gordon textbook Chapters 9-11.

Week 5: Logit Models II

Week 6: Midterm.
No readings.

Week 7: Reading Week
Week 8: Survival Analysis I

Week 9: Survival Analysis II

Week 10: Panel Data and Causality

Week 11: Panel Data and Fixed Effects Regression

Weeks 12, 13, and 14: Workshop Student Projects
Academic Offenses: Scholastic offences are taken seriously and students are directed to read the appropriate policy, specifically the definition of what constitutes a Scholastic Offence, at the following web site:
http://www.uwo.ca/univsec/pdf/academic_policies/appeals/scholastic_discipline_grad.pdf

Plagiarism: Students must write their essays and assignments in their own words. Whenever students take an idea, or a passage from another author, they must acknowledge their debt both by using quotation marks where appropriate and by proper referencing such as footnotes or citations. Plagiarism is a major academic offence (see Scholastic Offence Policy in the Western Academic Calendar).

All required papers may be subject to submission for textual similarity review to the commercial plagiarism detection software under license to the University for the detection of plagiarism. All papers submitted will be included as source documents in the reference database for the purpose of detecting plagiarism of papers subsequently submitted to the system. Use of the service is subject to the licensing agreement, currently between The University of Western Ontario and Turnitin.com (http://www.turnitin.com).

Completion of Graduate Course Requirements: Course requirements must be completed by the end of the term in which the course is offered (April 30). Only in exceptional circumstances and with permission, may a student take additional time to complete the course requirements. More details are outlined in the Graduate Handbook:
http://www.sociology.uwo.ca/graduate_handbook/course_information.html

Missed Exams and Late Assignments: In case of medical illness or other circumstance and an exam cannot be taken, students can bring documentation in writing. Late assignments are marked down 5 points (of 100) per day (24 hour period) late. Anything submitted after the time/date due is one day late.

Graduate Course Health and Wellness: As part of a successful graduate student experience at Western, we encourage students to make their health and wellness a priority. Western provides several on campus health-related services to help you achieve optimum health and engage in healthy living while pursuing your graduate degree. For example, to support physical activity, all students, as part of their registration, receive membership in Western’s Campus Recreation Centre. Numerous cultural events are offered throughout the year. For example, please check out the Faculty of Music web page http://www.music.uwo.ca/, and our own McIntosh Gallery http://www.mcintoshgallery.ca/. Information regarding health- and wellness-related services available to students may be found at http://www.health.uwo.ca/. Students seeking help regarding mental health concerns are advised to speak to someone they feel comfortable confiding in, such as their faculty supervisor, their program director (graduate chair), or other relevant administrators in their unit. Campus mental health resources may be found at http://www.health.uwo.ca/mental_health/resources.html.
Data Analysis Project Instructions

The data analysis project is designed to help students develop a research question, conduct data analysis, make tables, and write and present the method and results. There are graded written and oral components. The idea is to use the skills gained throughout the semester.

Choosing a Topic, Data, and Method
• Choose a topic in your research area. It can be part of a thesis. It can be something you started for another course, or an idea you had a long time ago. It can be a paper that you are getting ready to send for publication.
• The project cannot be based on a paper that is co-authored. This must be YOUR work alone.
• Choose your data carefully. You will want data that will help you answer your question. You also want data that you have easy access to and that you can starting working with right away. If you don’t have a data set, you can browse publically available data sets ICPSR. http://www.icpsr.umich.edu/icpsrweb/ICPSR/access/index.jsp
• The project must use one of the methods that we are covering in the course. Choose a question that you can answer with one of these methods.

Evaluation
The data analysis project will comprise 55% of your final grade for the course. There are 3 graded components:

1) Research Questions and Data Source (10% of final grade). Students will submit their research question and data source on February 25th. This should be 1-2 pages. Explain what data you are using to answer your questions and why the data are well suited to the research question at hand.

2) Oral Presentation (20% of final grade). Students will present their projects to the class on March 25, April 1, and April 8. Students should prepare 10-13 minute presentations on their research project, with 10-20 slides. This is a similar length presentation to those for most conferences and therefore is good practice. The presentation should highlight all the important parts of the paper: research questions, contributions, data, method, results, discussion. The whole audience should be able to see the text of your slides. Do not use text smaller than size 24.

Practice your presentation: A good presentation is one that you have practiced! Do it for your friends and have them tell you whether your slides and talk are clear. Students will sign up for a presentation date by mid-semester. Presenting earlier in the course gives you time to incorporate the comments from your classmates into your project before submitting the final project on the last day of class.

3) Final Written Version of Project (25% of final grade). On April 13, 10am, students will turn in the following sections of a research paper: Research Questions, Contributions, Data, Methods, Results, Discussion, Tables, and References.
Instructions for Final Project
The length of the final paper should be between 15 and 20 pages, with text double spaced. Including text, tables, figures, and references, the paper MUST NOT EXCEED 25 pages. No title page is necessary. Hand in a printed copy of the paper.

The paper should look professional and should be free of spelling, grammatical, and formatting errors. Use Times New Roman font (size 12) and double space the paper. Align the text on the left side of the page. All tables should go at the END of the paper, after the references.

The final paper should include the following sections and answer the following questions.

Research Questions
What research question/s do you answer in this paper?

Contributions
Explain succinctly what your project adds to the literature on your topic and why it’s important.

Data
Data: What data do you use? Where did you get it? What are the strengths of the data for your research project? Any weaknesses should either be discussed in the data or with the limitations in the discussion.
Analytic sample: How many respondents are there in the data? How many in your analytic sample? If you are not using the whole sample, why did you drop respondents? How do you handle missing data?
Measures: What are the variables you chose to use? Justify including the variables you do and why you code them in the way you do.

Method
What is your analytic approach? For this project, you must use one of the methods that we cover in this course. Make sure to choose a research question that you can answer with one of these methods and that you do not need something more complex. Show the equation that you use for your multivariate model, including all variables that you use.

Results
Explain the results of your analysis. Start with the sample characteristics and explain why the descriptive results warrant the multivariate approach. Use the Miller text to help you decide how to talk about your results. You may also want to use an example paper to decide how much text to spend on your results. Make sure to tell the reader what tables or figures he/she should see for the results that you are discussing.

Discussion
What are the conclusions of your analysis? How do they contribute to what we know about this topic? Are they interesting? Important? How do they relate to other research on the topic? If they are different, discuss why they might differ.
Discuss the limitations of your project.

Tables and/or Figures
Your tables should show 1) That there is interesting variation in your dependent variable by your independent variable of interest, 2) Sample characteristics of your analytic sample, 3) Results from your multivariate analysis. All tables and figures should be formatted like those in the Miller text. All tables and figures should have clear titles explaining what is being shown.
References
Include a list of references, in the style used by ASA journals. Here are instructions. Refer to the ASA Style Guide (4th ed., 2010) or any issue of American Sociological Review or the Journal of Health and Social Behavior for additional examples.

References are presented in a separate section headed “REFERENCES.” All references cited in the text must be listed in the reference section, and vice versa. Publication information for each must be complete and correct. List the references in alphabetical order by authors’ last names; include first names and middle initials for all authors when available. List two or more entries by the same author(s) in order of the year of publication. When the cited material is not yet published but has been accepted for publication, use “Forthcoming” in place of the date and give the journal name or publishing house. For dissertations and unpublished papers, cite the date and place the paper was presented and/or where it is available. If no date is available, use “n.d.” in place of the date. If two or more cited works are by the same author(s) within the same year, list them in alphabetical order by title and distinguish them by adding the letters a, b, c, etc., to the year (or to “Forthcoming”). For works with more than one author, only the name of the first author is inverted (e.g., “Jones, Arthur B., Colin D. Smith, and James Petersen”). List all authors; using “et al.” in the reference list is not acceptable. References for data sets should include a persistent identifier, such as a Digital Object Identifier (DOI). Persistent identifiers ensure future access to unique published digital objects, such as a text or data set. Persistent identifiers are assigned to data sets by digital archives, such as institutional repositories and partners in the Data Preservation Alliance for the Social Sciences (Data-PASS). Refer to the ASA Style Guide (4th ed., 2010) for additional examples:

1. **Books:**

2. **Periodicals:**

3. **Collections:**

4. **Dissertations:**

5. **Web sites:**

6. **Data Sets:**
The `ssc` command allows you to download contributed commands from the Boston College Statistical Software Components (SSC) archive, often called the Boston College Archive, which are provided by http://repec.org. Stata: Data Analysis and Statistical Software.

`ssc install outreg`: all of the files associated with the package named `outreg` are downloaded and installed on your computer. Packages can easily be uninstalled. You type `ado dir` to obtain a list of packages that you have previously installed, and then you type `ado uninstall [#]` to uninstall the package. For more information, see `[R] ssc`. Click on "Multivariate Statistics" and then click on our book. In addition, all full data sets saved as ASCII files that are used in the book are available on the web site.

Recent advances in computer technology have been accompanied by the development of rather sophisticated statistical software packages, making the implementation step easier. Multivariate analysis is a "mixed bag." It is difficult to establish a classification scheme for multivariate techniques that is both widely accepted and indicates the appropriateness of the techniques.

Chapter 1 Aspects of Multivariate Analysis. Linking Multiple Two-Dimensional Scatter Plots One of the more exciting new graphical procedures involves electronically connecting many two-dimensional scatter plots. Multivariate normality is explored in terms of calculating Mahalanobis distances and plotting them on a scattergram against derived chi-square values using Fortran and Statistical Package for the Social Sciences (SPSS) programs developed by B. Thompson (1990, 1997). Appendixes, which comprise more than half the half, contain the SPSS commands, two computer programs for the analysis, and some results of the analyses.