
Leaf, Caroline Mary

URI: http://hdl.handle.net/2263/71220
Date: 1997

Abstract:

The current study identifies the reasons why change in traditional perceptions of learning is needed by tracing the philosophies of traditional methods and their effect on the perception of learning, and proposes an alternative geodesic approach, the Mind-Mapping Approach (MMA). Inherent in the model is the implication that traditional methods do not facilitate effective holistic thinking and as a result, do not produce effective lifelong learners. Extrapolated from the MMA model and its assumptions, is a practical framework, the MMA, that, when implemented within learning environments, will foster geodesic thinking which is in natural compliance with the functioning of the brain and therefore to be preferred. The study tested the validity of the above assumption by providing training in an alternative geodesic approach, the MMA, to a group of 45 teachers and therapists that work with learning disabled pupils - this comprised the first experiment of this study. The teachers and therapists in turn used the MMA methods with their pupils (639)- this comprised the second experiment of the study. In this way both the MMA as a geodesic framework, and the actual effectiveness of the MMA training programme in conveying geodesic principles, were evaluated. The results indicated that although significant benefit was derived by the teachers and therapists from the MMA training, these were conservative. Furthermore, the overall longitudinal trends of the pupils' results also indicated that a significant positive change was experienced by the pupils with the introduction of the MMA methods, but not to the extent predicted. It is speculated that this conservative, although significantly positive improvement in the teachers, therapists and pupils is attributed to the fact that the MMA methods are geodesic facilitating improved thinking, problem-solving and research skills, and innovative learning. However traditional methods of teacher training, testing and evaluating do not facilitate these skills as their emphasis is on the accrual as opposed to creation of facts. It is possible therefore that the conservatively positive results of this study reflect the "carry-over" effect of geodesic training. It can be said that the partial application of the MMA methods by the teachers and therapists did improve the performance of the pupils and that this study was therefore successful, but that the results would have been more positive had the pupils been evaluated in a way that matched the geodesic training. In addition, the study provides valuable information regarding the effect of geodesic systems on traditional systems of learning.

Afrikaans: Hierdie studie identifiseer die redes vir die noodsaaklikheid om tradisionele leerperspeksies te verander deur die filosofiee van tradisionele metodes en hul effek op die leerperspeksie na te gaan, en dit stel 'n alternatiewe geodetiese benadering voor, bekend as die breinkaartbenadering (BKB) (Engels: mind-mapping approach (MMA) ). Inherent in die model is die implikasie dat tradisionele metodes nie doeltreffend holistiese denke voortlief nie, en gevolglik nie doeltreffende lewenslange leerlinge voortbring nie. 'n Praktiese raamwerk word uit die BKB-model en sy aanames ekstrapoleer, nl die BKB wat, wanneer dit binne leeromgewings geimplementeer word, geodetiese denke sal bevorder. Dit is waarskynlik dat 'n natuurlike voldoening is met die funksionering van die brein en derhalwe verkieslik is. Die studie het die geldigheid van die bovenhewende aanname getoets deur opleiding in 'n alternatiewe geodetiese benadering, die BKB, te verskaf aan 'n groep van 45 onderwysers en terapeute wat met leerstremde leerlinge werk. Dit het die eerste eksperiment van die studie uitgemaak. Die onderwysers en terapeute het op hul beurt die BKB-metodes met hul leerlinge (639) gebruik, wat die tweede eksperiment van die studie uitgemaak. Sodoende is beide die BKB en die eintlike doeltreffendheid van die BKBopleidingsprogram in die oordra van geodetiese beginsels geëvalueer. Die resultate het aangedui dat, alhoewel onderwysers en terapeute beduidend baat geënt het by die BKB-opleiding, dit konserwatief was. Verder het dit langstendense van die leerlinge se resultate ook aangedui dat 'n noemenswaardige positiewe verandering deur leerlinge ervaar is met die invoering van die BKB-metodes, maar nie in die mate wat voorspel is nie. Daar word bereken dat die konserwatiewe, alhoewel aansienlik positiewe verbetering in die onderwysers, terapeute en leerlinge toekrybaar is aan die feit dat die BKB-metodes geodeties is, wat verbeterde denke, probleemoplossing en navorsingsvaardighede, sowel as innoverende leer moontlik maak. Traditionele leer-, opleidings-, toets- en evalueringssysteme faciliteer egter nie hierdie vaardighede nie, aangesien die klem op die memorisering van feite val. Dit is dus moontlik dat die konserwatiewe positiewe resultate van hierdie studie die "oordra" -effek van geodetiese opleiding weerspieël. Daar kan gese word dat die gedeeltelike toepassing van die BKB-metodes deur onderwysers en terapeute die prestasie van die leerlinge verbeter het, en dat die studie dus suksesvol was, maar so 'n manier geëvalueer kon word wat die geodetiese opleiding geewen het. Die studie verskaf ook waardevolle inligting rakende die effek van geodetiese stelsels op tradisionele stelsels.
Mind mapping is one of the techniques that can improve memory and learning skills. Use this along with other techniques: [1] Spaced repetition: you can store information for Long Term if you forget after 3 days it is very natural. And this is appl... Without reservations, I dare to say that 'mind mapping' is not the best study method, but it just happens to be one of the many useful study techniques available, just like Cornell Method, SQ3R, 6W1H questioning toolkit, Question Dissection Protocol, just to name a few. In a nut shell, 'mind mapping' as it stands is just an information capturing/organising/processing tool, using a centralised concept and a visual combination of radiating lines, keywords, pictures, images, symbols, and assorted colours to highlight key information on a sheet of paper. Using mind maps, students can easily brainstorm ideas for the topic of their essay; they can collect arguments, quotes, and other information from various sources; and they can visually outline the structure of their essays. Introducing @mindmeister to help my students stay organized and be creative during brainstorming activities! #psstech. — Connie Conner (@stallionccc87) March 30, 2017. You can also add exam dates and learning goals to the mind map and attach worksheets. Then, share this map with your students so they can use it as a guide during the semester and find out what they need to catch up on if they've missed a class. Just revolutionized my semester plan using MindMeister. A scientific approach to mind management, will power, planning, scheduling, neurotransmitters that are responsible for the effective execution of plans deriving from Mind Mapping. Learn brainstorming strategies that can take you to a whole new level. You will learn different creative approaches to collecting ideas and organizing thought patterns. You will increase your effectiveness on a daily basis. You will be able to not just save time, but to create time. Requirements. Know how to use a phone and computer. Have a general idea about mind mapping and mind maps. Have a basic idea about brains Learning media developed using a mind mapping and web-based approach. This type of research used in this study is Research and Development with the 4D development model (Define, Design, Develop, & Disseminate). Product trials conducted limited to 20 students by analyzing the results of the pre-test and post-test, which were calculated using the gain score and t-test. The test results show that web-based mind mapping learning media can improve students' understanding. Because by using this learning media, the active mental processes of each student become aroused, the material provided This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multi-dimensional scaling for generating maps that approximately preserve geodesic distances. Importantly, the combination of a deep-learning framework with a multi-dimensional scaling objective enables a numerical analysis of network architectures to aid in understanding their representation power. This provides a geometric perspective to the generalizability of deep learning.